Robustness of Kernel Based Regression: A Comparison of Iterative Weighting Schemes
نویسندگان
چکیده
It has been shown that Kernel Based Regression (KBR) with a least squares loss has some undesirable properties from robustness point of view. KBR with more robust loss functions, e.g. Huber or logistic losses, often give rise to more complicated computations. In this work the practical consequences of this sensitivity are explained, including the breakdown of Support Vector Machines (SVM) and weighted Least Squares Support Vector Machines (LS-SVM) for regression. In classical statistics, robustness is improved by reweighting the original estimate. We study the influence of reweighting the LS-SVM estimate using four different weight functions. Our results give practical guidelines in order to choose the weights, providing robustness and fast convergence. It turns out that Logistic and Myriad weights are suitable reweighting schemes when outliers are present in the data. In fact, the Myriad shows better performance over the others in the presence of extreme outliers (e.g. Cauchy distributed errors). These findings are then illustrated on toy example as well as on a real life data sets.
منابع مشابه
On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کاملVisual Tracking using Kernel Projected Measurement and Log-Polar Transformation
Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009